Part Number Hot Search : 
AME88 90000 TDA73 HAT1055R MA2YD D6433 SMCJ54 100CT
Product Description
Full Text Search
 

To Download IRFP460A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  to-247ac 6/23/99 IRFP460A smps mosfet hexfet ? power mosfet l switch mode power supply ( smps ) l uninterruptable power supply l high speed power switching benefits applications l low gate charge qg results in simple drive requirement l improved gate, avalanche and dynamic dv/dt ruggedness l fully characterized capacitance and avalanche voltage and current l effective coss specified ( see an1001) v dss rds(on) max i d 500v 0.27 w 20a typical smps topologies: l full bridge l pfc boost s d g parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 20 i d @ t c = 100c continuous drain current, v gs @ 10v 13 a i dm pulsed drain current ? 80 p d @t c = 25c power dissipation 280 w linear derating factor 2.2 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt ? 3.8 v/ns t j operating junction and -55 to + 150 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torqe, 6-32 or m3 screw 10 lbf?in (1.1n?m) absolute maximum ratings notes ? through ? are on page 8 pd- 91880 www.vishay.com 1 document number: 90301
IRFP460A parameter min. typ. max. units conditions g fs forward transconductance 11 CCC CCC s v ds = 50v, i d = 12a q g total gate charge CCC CCC 105 i d = 20a q gs gate-to-source charge CCC CCC 26 nc v ds = 400v q gd gate-to-drain ("miller") charge CCC CCC 42 v gs = 10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 18 CCC v dd = 250v t r rise time CCC 55 CCC i d = 20a t d(off) turn-off delay time CCC 45 CCC r g = 4.3 w t f fall time CCC 39 CCC r d = 13 w ,see fig. 10 ? c iss input capacitance CCC 3100 CCC v gs = 0v c oss output capacitance CCC 480 CCC v ds = 25v c rss reverse transfer capacitance CCC 18 CCC pf ? = 1.0mhz, see fig. 5 c oss output capacitance CCC 4430 CCC v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 130 CCC v gs = 0v, v ds = 400v, ? = 1.0mhz c oss eff. effective output capacitance CCC 140 CCC v gs = 0v, v ds = 0v to 400v ? dynamic @ t j = 25c (unless otherwise specified) ns parameter typ. max. units e as single pulse avalanche energy ? CCC 960 mj i ar avalanche current ? CCC 20 a e ar repetitive avalanche energy ? CCC 28 mj avalanche characteristics s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.8 v t j = 25c, i s = 20a, v gs = 0v ? t rr reverse recovery time CCC 480 710 ns t j = 25c, i f = 20a q rr reverse recoverycharge CCC 5.0 7.5 c di/dt = 100a/s ? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) diode characteristics 20 80 a parameter typ. max. units r q jc junction-to-case CCC 0.45 r q cs case-to-sink, flat, greased surface 0.24 CCC c/w r q ja junction-to-ambient CCC 40 thermal resistance static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 500 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.61 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.27 w v gs = 10v, i d = 12a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a CCC CCC 25 a v ds = 500v, v gs = 0v CCC CCC 250 v ds = 400v, v gs = 0v, t j = 125c gate-to-source forward leakage CCC CCC 100 v gs = 30v gate-to-source reverse leakage CCC CCC -100 na v gs = -30v i gss i dss drain-to-source leakage current www.vishay.com 2 document number: 90301
IRFP460A fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1 10 100 20 s pulse width t = 150 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 4.0 5.0 6.0 7.0 8.0 9.0 v = 50v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 150 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 19a 20a www.vishay.com 3 document number: 90301
IRFP460A fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 20 40 60 80 100 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 19a v = 100v ds v = 250v ds v = 400v ds 0.1 1 10 100 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 1 10 100 1000 10000 100000 1 10 100 1000 c, capacitance (pf) ds v , drain-to-source volta g e ( v ) a v = 0v , f = 1mhz c = c + c , c sho rted c = c c = c + c gs iss g s g d ds rss g d oss ds g d c iss c oss c rss 20a 1 10 100 1000 10 100 1000 10000 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source volta g e (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms www.vishay.com 4 document number: 90301
IRFP460A fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 0 5 10 15 20 t , case temperature ( c) i , drain current (a) c d 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) www.vishay.com 5 document number: 90301
IRFP460A q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v fig 12d. typical drain-to-source voltage vs. avalanche current 540 560 580 600 620 0 4 8 121620 a dsav av i , avalanche current ( a ) v , avalanche voltage (v) 25 50 75 100 125 150 0 400 800 1200 1600 2000 2400 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 8.9a 13a 20a www.vishay.com 6 document number: 90301
IRFP460A p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * www.vishay.com 7 document number: 90301
IRFP460A part marking information to-247ac package outline to-247ac outline dimensions are shown in millimeters (inches) lead assignments notes: - d - 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 3x 0.80 (.031) 0.40 (.016) 2.60 (.102) 2.20 (.087) 3.40 (.133) 3.00 (.118) 3x 0.25 (.010) m c a s 4.30 (.170) 3.70 (.145) - c - 2x 5.50 (.217) 4.50 (.177) 5.50 (.217) 0.25 (.010) 1.40 (.056) 1.00 (.039) 3.65 (.143) 3.55 (.140) d mm b - a - 15.90 (.626) 15.30 (.602) - b - 123 20.30 (.800) 19.70 (.775) 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2x 2x 5.45 (.215) 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline t o -24 7-a c . 1 - gate 2 - drain 3 - source 4 - drain world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 ir great britain: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673, taiwan tel: 886-2-2377-9936 data and specifications subject to change without notice. 6/99 intern ation al r e c t if ie r lo g o assembly lo t c o d e example : this is an irfpe30 w ith assembly lo t c o d e 3a 1q part number date code (y yw w ) yy = year ww week 3a1q 9302 irfpe30 a ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? i sd 20a, di/dt 125a/s, v dd v (br)dss , t j 150c notes: ? starting t j = 25c, l = 4.3mh r g = 25 w , i as = 20a. (see figure 12) ? pulse width 300s; duty cycle 2%. ? c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss www.vishay.com 8 document number: 90301
legal disclaimer notice vishay document number: 99901 www.vishay.com revision: 12-mar-07 1 notice the products described herein were acquired by vishay intertechnology, inc., as part of its acquisition of international rectifier?s power control systems (pcs) business, which closed in april 2007. specifications of the products displayed herein are pending review by vishay and are subject to the terms and conditions shown below. specifications of the products displayed herein are subject to change without notice. vishay intertechnology, inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. information contained herein is intended to provide a product description only. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. except as provided in vishay's terms and conditions of sale for such products, vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and /or use of vishay products including liab ility or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyrigh t, or other intellectual property right. the products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify vishay for any damages resulting from such improper use or sale. international rectifier ? , ir ? , the ir logo, hexfet ? , hexsense ? , hexdip ? , dol ? , intero ? , and powirtrain ? are registered trademarks of international rectifier corporation in the u.s. and other countries. all other product names noted herein may be trademarks of their respective owners.


▲Up To Search▲   

 
Price & Availability of IRFP460A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X